National Journal of Physiology, Pharmacy and Pharmacology

RESEARCH ARTICLE

Evaluation of platelet function in subjects with type-2 diabetes mellitus: A case—control study

Pawan Goyal¹, Swati Mahajan², Chintan Parmar¹

¹Department of Physiology, NAMO Medical Education and Research Institute, Silvassa, Dadra and Nagar Haveli, India, ²Department of Physiology, Parul Institute of Medical Science and Research, Limda, Waghodiya, Vadodara, Gujarat, India

Correspondence to: Swati Mahajan, E-mail: prthptl231@gmail.com

Received: March 04, 2020; Accepted: May 14, 2020

ABSTRACT

Background: Diabetes mellitus (DM) has been growing as a worldwide health problem. Platelet morphology and functions have changed in diabetes because of its hyperactive behavior in DM 2 patient. **Aim and Objective:** This study aims to observe the change in the platelet parameters between the non-diabetics and diabetics patients. **Materials and Methods:** This case—control study was carried out on Type 2 DM cases (n = 100) and non-diabetic controls (n = 100). The study subjects were divided into two groups bases on their glycosylated hemoglobin (HbA1c) report: With HbA1c levels $\leq 7\%$ (n = 56) and with HbA1c levels $\geq 7\%$ (n = 44). **Results:** There is statistically significant raise in mean platelet volume (MPV) in diabetics (control group: 10.45 ± 0.45 vs. diabetic group: 10.71 ± 0.39 , $P \leq 0.001$). It was observed that platelet distribution width (PDW) and MPV were increased in diabetics with HbA1c ≥ 7 as compared to patients with ≤ 7 HbA1c (HbA1c ≤ 7 group vs. HbA1c ≥ 7 group = 7 PDW: 11.116 ± 1.28 vs. 11.593 ± 0.69 , = 7 P = 0.03, MPV: 10.67 ± 0.65 vs. 11.09 ± 1.03 , = 7 P = 0.01). **Conclusions:** The observation indicates the increase MPV value in diabetic patients which shows an increment in the size of platelet because of value-added prothrombotic factors. These larger sized platelets cause an increase in PDW and MPV value. Higher adherence and adhesion caused by hyperactive platelets in diabetes patients lead to vascular complications which are suggested by the present study through the significant high value of HbA1c in diabetics. Hence, MPV is considered as a distinguished prognostic marker in early identification of cardiovascular complications tandem reduction of fatality in diabetics.

KEY WORDS: Diabetes Mellitus; Glycosylated Hemoglobin; Mean Platelet Volume and Platelet Distribution Width

INTRODUCTION

Diabetes mellitus (DM) has been growing as a worldwide health problem. At present, in 2019, 463 million adults are suffering from diabetes and it will swell up to 700 million by the end of 2045. Majority of affected people are from the age

Access this article online

Website: www.njppp.com

Quick Response code

DOI: 10.5455/njppp.2020.10.03057202014052020

group of 40 to 59 years; however, its threat ranges from 20 to 79 years. The alarming concern is increasing the risk of type 2 diabetes which is 374 million people. It is estimated that India would leave its second highest burden impression on a global platform with 77 million adults from 2019 to 2045 by 134.2 million adults, leaving China on the top position.^[1]

Diabetes is a chronic metabolic disorder which is identified by its significant sign hyperglycemia. Hyperglycemia is a result of inadequate production of insulin or insulin resistance behavior of the human body.^[1] Insulin acts as a moderator of glucose level in the bloodstream and works as an antagonist of platelet hyperreactivity.^[2] Platelet morphology and functions have changed, because of its hyperactive behavior

National Journal of Physiology, Pharmacy and Pharmacology Online 2020. © 2020 Swati Mahajan, et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creative commons.org/licenses/by/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material for any purpose, even commercially, provided the original work is properly cited and states its license.

in DM 2 patient.^[3] Moreover, this prolonged insulin resistance state causes a damaging effect on pericytes and vascular endothelium^[4] which make DM 2 patient more susceptible to diseases due to metabolic changes such as atherogenic dyslipidemia, hypertension, glucose intolerance, and prothrombotic state that enhance thrombosis and suppress thrombolysis.^[5,6] Ultimately, these changes anticipated to end up causing multiorgan damage and development of life-threatening organic microvascular deficiencies such as cardiovascular disease, neuropathy, nephropathy, and eye diseases such as retinopathy and blindness.^[1]

Role of platelet is vital in normal homeostasis, and thus, platelet indices, for instance, platelet count (PC), plateletcrit (PCT) (total mean of PC), platelet distribution width (PDW), mean platelet volume (MPV), and platelet-large cell ratio (P-LCR), are considered the prime indicators for any changes in platelet morphology. [3,7-9] These indicators provide help in early identification of the prothrombotic event. MPV is an emergency risk marker for platelet activation since it shows the average size and activity of platelets. Many studies have depicted that these platelet indices show increasing trend results in diabetic patients which are not the case in non-diabetic patients.^[3,9] Therefore, this study is conducted to observe the change in the platelets parameters between diabetics and non-diabetics and also examine changes occurred on various platelet parameters by glycemic control and the duration of the disorder.

MATERIALS AND METHODS

This case-control study was carried out at the pathology department of NAMO Medical Education And Research Institute, Silvassa, Dadra and Nagar. A total of 100 individuals were included for the study who were diagnosed as a Type 2 DM, and age- and sex-matched 100 non-diabetic individuals were taken as controls. All participants were informed about the basic purpose of the study. Confidentiality was assured to them along with informed written consent. The Institutional Ethical Committee gave an ethical approval of the study. All the patients underwent a complete clinical examination. Demographic details were recorded. Few major diagnostic tests were performed along with overnight fasting status. The performed tests are the blood pressure examination, serum lipid profile, fasting and postprandial blood glucose levels, glycosylated hemoglobin (HbA1c), and platelet parameters such as PCT, MPV, PC (PLT), PDW, and P-LCR. Platelet parameters were estimated using an auto-analyzer. MPV was obtained using the formula, MPV (fL) = ([PCT $\%/PC \times 10^9/I]$) × 10⁵. PCT estimates the total platelet mass in the blood. Histogram was used to check the normality of the data. The crest of the distribution curve was considered as 100% and the distribution was defined as 20% for PDW level. P-LCR was defined as the percentage above the normal platelet volume, i.e., 12 fL, in total PC.[10] To examine the correlation between the platelet parameter with glycemic control, the reference point of HbA1c has decided, i.e., seven. Various studies have taken up HbA1c level 7 as the reference points to distinguish between the appropriate and inappropriate control clinically. Hence, the diabetic patients were separated in two groups on the bases of HbA1c – one group was presenting 56 patients having HbA1c level \leq 7% while the second group was having 44 patients with HbA1c levels \geq 7% HbA1c.

Statistical Analysis

The collected data were entered into Microsoft Excel spreadsheet 2010 and analyzed by help EPI INFO software Ver.7. Moreover, Z test was applied to find out the outcome. The results have presented in mean \pm standard deviation and checked at 95% of confidence level.

RESULTS

This case—control study was intended to observe the difference by comparing platelet parameters between the case—diabetic patients (n = 100) and the control—non-diabetic (n = 100) patients. Physical characteristics such as age, weight, height, and body mass index (BMI) of both groups are shown in Table 1. The results of Z test did not show a statistically significant difference between the groups.

Platelet indices have been compared between control and diabetic group. The results depicted significant higher MPV value in diabetic patients (control group: 9.81 ± 0.4 vs. diabetic group: 10.20 ± 0.77 , P = 0.02, Table 2).

 Table 1: Comparison of physical characteristics between controls and (case) diabetics

Variables	Group I	Group II	P value
	control (<i>n</i> =100)	diabetics (n=100)	
Age (years)	48.1±6.116	49±7.34	0.34
Height (m)	1.65 ± 0.11	1.66 ± 0.13	0.07
Weight (kg)	63.4 ± 8.8	64.4±11.5	0.07
Body mass index	23.51±3.2	23.7±3.37	0.92

Table 2: Comparison of platelet parameters between controls and (case) diabetics

Platelets	Mea	P value	
	Group I control (n=100)	Group II diabetics (n=100)	
PLT	2.74±0.47	3.010 ± 0.81	0.08
PDW	11.70 ± 0.86	11.98 ± 1.78	0.49
MPV	9.81 ± 0.4	10.20 ± 0.77	0.02*
P-LCR	25.50 ± 2.98	26.36 ± 5.43	0.46
PCT	0.27±0.04	0.29±0.07	0.11

*Statistically significant. PDW: Platelet distribution width, MPV: Mean platelet volume, P-LCR: Platelet-large cell ratio, PCT: Plateletcrit

Moreover, we compare the platelet parameters between diabetic patients having HbA1c value, less than or equal to 7 and greater than 7. With this the result indicates that MPV and PDW indices were significantly increased in diabetics with HbA1c >7.

Table 3 clearly shows a statistically significant increase in PDW and MPV values (HbA1c \leq 7 group vs. HbA1c \geq 7 group – PDW: 11.37 \pm 1.01 vs. 12.42 \pm 1.48, P = 0.01, MPV: 10.01 \pm 0.70 vs. 10.54 \pm 0.85, P = 0.01).

DISCUSSION

In this study, all the platelet indices were increased in diabetic patients as compared to non-diabetic patients but only MPV showed a statistically significant result. The similar statistically significant rise in MPV value in diabetics has been observed in Kodiatte *et al.*,^[3] Papanas *et al.*,^[12] Shilpi *et al.*,^[13] Jindal *et al.*,^[14] Demirtunc *et al.*,^[15] Ozae and Eker,^[16] and Ulutas *et al.*^[17] In contrast to this, the study result of Akinsegun *et al.*^[18] shows a lesser value of MPV in diabetics and also it is not significant.

However, in this study, other than MPV parameter, PDW and P-LCR value, also raised in diabetics, but these increments were not statistically significant enough to draw any decisive conclusion. On the other hand, the statistically significant rise in the value of both the parameters has observed in the study of Shilpi *et al.*^[13] Moreover, the higher and significant value of PDW has observed in the study results of Demirtas *et al.*,^[15] Jabeen *et al.*,^[19] and Dalamaga *et al.*^[20] In addition to this, Jindal *et al.*^[14] and Ashraf *et al.*^[21] showed the significantly higher result for P-LCR parameter.

Moreover, in diabetic patients, the mean PC has raised but not statistically significant which produces and analogy with a study result of Demirtunc *et al.*^[15] However, Kodiatte *et al.*^[3] showed a statistically significant rise in the mean PC in the respective group of the patients.

In the present study, MPV and PDW were carrying significantly higher value in the diabetics with HbA1c >7%

Table 3: Comparison of parameters between diabetics with HbA1c <7 and HbA1c >7

= =					
Platelet	Mean±SD		P value		
parameters	Diabetics with HbA1c ≤7 (<i>n</i> =56)	Diabetics with HbA1c >7 (n=44)			
PLT	2.92±0.79	3.09±0.84	0.41		
PDW	11.37 ± 1.01	12.42 ± 1.48	0.01*		
MPV	10.01 ± 0.70	10.54 ± 0.85	0.01*		
P-LCR	26.04 ± 5.14	26.73 ± 5.74	0.62		
PCT	0.29 ± 0.06	0.3 ± 0.09	0.56		

*Statistically significant. PDW: Platelet distribution width, MPV: Mean platelet volume, P-LCR: Platelet-large cell ratio, PCT: Plateletcrit

while comparing them to diabetics with HbA1c \leq 7%. Kodiatte *et al.*^[3] and Zuberi *et al.*^[9] also showed similar increment in value for MPV and PDW in the diabetics with HbA1c \geq 7%.

Platelet hyperreactivity is directly linked with the size and consistency of the platelet surface. The higher glucose level in hyperglycemic patients is generating a higher amount of glycoprotein. [18] These glycoproteins undergo non-enzymatic glycation tandem decrease the platelet membrane tenderness. Bancroft *et al.*, [22] eventually, these hyperactive platelets are transformed into multi-pseudopodia structure and become potentially liable for adhesion and adherence. Hence, the present study result of increase MPV and PDW is depicting platelet hyperreactivity. Thus, MPV can be a distinguished prognostic marker and a simple, economical tool to monitor the progression and control of DM and helps in preventing complications in primary health care.

This is a hospital-based study with small sample size. Therefore, the result of the present study could not be generalized to the population.

CONCLUSIONS

The present study indicates the increase MPV value in diabetic patients which shows the increment in the size of platelet because of value-added prothrombotic factors. These larger sized platelets cause an increased value of PDW and MPV indices. Moreover, higher adherence and adhesion caused by hyperactive platelets in diabetes patients lead to vascular complications which are suggested by the present study through the significant high value of HbA1c in diabetics.

ACKNOWLEDGMENT

I express my sincere gratitude to Dr. Jayant Makwana, Professor, to sharing his wisdom during the study. I am thankful to Dr. Bhadresh Vaghela, Associate Professor, for his suggestions. I want to thank wholeheartedly to the study participants without whom this study would not have been completed.

REFERENCES

- IDF Diabetes Atlas. International Diabetes Federation. IDF Diabetes Atlas. 9th ed. Brussels, Belgium: International Diabetes Federation; 2019.
- 2. Keating FK, Sobel BE, Schneider DJ. Effects of increased concentrations of glucose on platelet reactivity in healthy subjects and in patients with and without diabetes mellitus. Am J Cardiol 2003;92:1362-5.
- 3. Kodiatte TA, Manikyam UK, Rao SB, Jagadish TM, Reddy M, Lingaiah HK, *et al.* Mean platelet volume in Type 2 diabetes mellitus. J Lab Physicians 2012;4:59.

- 4. Buch A, Kaur S, Nair R, Jain A. Platelet volume indices as predictive biomarkers for diabetic complications in Type 2 diabetic patients. J Lab Physicians 2017;9:848.
- Reaven GM. Role of insulin resistance in human disease. Diabetes 1988;37:1595-607.
- Grundy SM. Hypertriglyceridemia, atherogenic dyslipidemia, and the metabolic syndrome. Am J Cardiol 1998;81:18B-25B.
- 7. Mishra J, Shah P, Sanil R. Hematological disorders from the Kota tribes of the Nilgris, India. Asian J Biochem Pharm Res 2012;2:156-62.
- 8. Elsherbiny IA, Shoukry A, El Tahlawi MA. Mean platelet volume and its relation to insulin resistance in non-diabetic patients with slow coronary flow. J Cardiol 2012;59:176-81.
- Zuberi BF, Akhtar N, Afsar S. Comparison of mean platelet volume in patients with diabetes mellitus, impaired fasting glucose and non-diabetic subjects. Singapore Med J 2008;49:1146.
- Kaito K, Otsubo H, Usui N, Yoshida M, Tanno J, Kurihara E, et al. Platelet size deviation width, platelet large cell ratio, and mean platelet volume have sufficient sensitivity and specificity in the diagnosis of immune thrombocytopenia. Br J Haematol 2005;128:698-702.
- 11. Nathan DM, Buse JB, Davidson MB, Ferrannini E, Holman RR, Sherwin R, *et al.* Medical management of hyperglycemia in Type 2 diabetes: A consensus algorithm for the initiation and adjustment of therapy: A consensus statement of the American diabetes association and the European association for the study of diabetes. Diabetes Care 2009;32:193-203.
- 12. Papanas N, Symeonidis G, Maltezos E, Mavridis G, Karavageli E, Vosnakidis TH, *et al.* Mean platelet volume in patients with Type 2 diabetes mellitus. Platelets 2004;15:475-8.
- 13. Shilpi, K., Potekar, R.M. A study of platelet indices in Type 2 diabetes mellitus patients. Indian J Hematol Blood Transfus 2018;34:115-20.
- 14. Jindal S, Gupta S, Gupta R, Kakkar A, Singh HV, Gupta K. Platelet indices in diabetes mellitus: Indicators of diabetic microvascular complications. Hematology 2011;16:86-90.
- 15. Demirtunc R, Duman D, Basar M, Bilgi M, Teomete M, Garip T. The relationship between glycemic control and platelet activity in Type 2 diabetes mellitus. J Diabetes Complications

- 2009;23:89-94.
- 16. Ozder A, Eker HH. Investigation of mean platelet volume in patients with Type 2 diabetes mellitus and in subjects with impaired fasting glucose: A cost-effective tool in primary health care? Int J Clin Exp Med 2014;7:2292-7.
- 17. Ulutas K, Dokuyucu R, Sefil F, Yengil E, Sumbul A, Rizaoglu H, *et al*. Evaluation of mean platelet volume in patients with type 2 diabetes mellitus and blood glucose regulation: A marker for atherosclerosis. Int J Clin Exp Med 2014;7:955-61.
- 18. Akinsegun A, Olusola D, Sarah J, Olajumoke O, Adewumi A, Majeed O, *et al.* Mean platelet volume and platelet counts in Type 2 diabetes: Mellitus on treatment and non-diabetic mellitus controls in Lagos, Nigeria. Pan Afr Med J 2014;18:1-5.
- Jabeen F, Rizvi H, Aziz F, Wasti A. Hyperglycemic induced variations in hematological indices in Type 2 diabetics. Int J Adv Res 2013;1:322-34.
- Dalamaga M, Karmaniolas K, Lekkab A, Antonakosa G, Thrasyvoulides A, Papadavid E, et al. Platelet markers correlate with glycemic indices in diabetic, but not diabetic myelodysplastic patients with normal platelet count. Dis Markers 2010;29:55-61.
- 21. Ranjan RK, Ashraf S, Singh S, Singh HB, Kudesia M, Sharma R. Diabetes disease burden by platelet indices as possible biomarkers in evaluation of initial vascular risks in grading diabetes mellitus Part I: Correlation of platelet dysfunction indices with hematopoietic and biochemical parameters. IOSR J Dent Med Sci 2018;17:33-52.
- 22. Bancroft J, Abel EW, McLaren M, Belch JJ. Mean platelet volume is a useful parameter: A reproducible routine method using a modified Coulter thrombocytometer. Platelets 2000;11:379-87.

How to cite this article: Goyal P, Mahajan S, Parmar C. Evaluation of platelet function in subjects with type-2 diabetes mellitus: A case–control study. Natl J Physiol Pharm Pharmacol 2020;10(08):667-670.

Source of Support: Nil, Conflicts of Interest: None declared.